Structure of the intact ATM/Tel1 kinase

نویسندگان

  • Xuejuan Wang
  • Huanyu Chu
  • Mengjuan Lv
  • Zhihui Zhang
  • Shuwan Qiu
  • Haiyan Liu
  • Xuetong Shen
  • Weiwu Wang
  • Gang Cai
چکیده

The ataxia-telangiectasia mutated (ATM) protein is an apical kinase that orchestrates the multifaceted DNA-damage response. Normally, ATM kinase is in an inactive, homodimer form and is transformed into monomers upon activation. Besides a conserved kinase domain at the C terminus, ATM contains three other structural modules, referred to as FAT, FATC and N-terminal helical solenoid. Here we report the first cryo-EM structure of ATM kinase, which is an intact homodimeric ATM/Tel1 from Schizosaccharomyces pombe. We show that two monomers directly contact head-to-head through the FAT and kinase domains. The tandem N-terminal helical solenoid tightly packs against the FAT and kinase domains. The structure suggests that ATM/Tel1 dimer interface and the consecutive HEAT repeats inhibit the binding of kinase substrates and regulators by steric hindrance. Our study provides a structural framework for understanding the mechanisms of ATM/Tel1 regulation as well as the development of new therapeutic agents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel Tel1/ATM N-terminal motif, TAN, is essential for telomere length maintenance and a DNA damage response.

Tel1/ATM, a conserved phosphatidylinositol 3-kinase-related kinase (PIKK), acts in the response to DNA damage and regulates telomere maintenance. PIKK family members share an extended N-terminal region of low sequence homology. Sequence alignment of the N terminus of Tel1/ATM orthologs revealed a conserved, novel motif we term TAN (for Tel1/ATM N-terminal motif). Point mutations in conserved re...

متن کامل

A Kinase-Independent Role for the Rad3ATR-Rad26ATRIP Complex in Recruitment of Tel1ATM to Telomeres in Fission Yeast

ATM and ATR are two redundant checkpoint kinases essential for the stable maintenance of telomeres in eukaryotes. Previous studies have established that MRN (Mre11-Rad50-Nbs1) and ATRIP (ATR Interacting Protein) interact with ATM and ATR, respectively, and recruit their partner kinases to sites of DNA damage. Here, we investigated how Tel1(ATM) and Rad3(ATR) recruitment to telomeres is regulate...

متن کامل

Requirement of the FATC domain of protein kinase Tel1 for localization to DNA ends and target protein recognition

Two large phosphatidylinositol 3-kinase-related protein kinases (PIKKs), ATM and ATR, play a central role in the DNA damage response pathway. PIKKs contain a highly conserved extreme C-terminus called the FRAP-ATM-TRRAP-C-terminal (FATC) domain. In budding yeast, ATM and ATR correspond to Tel1 and Mec1, respectively. In this study, we characterized functions of the FATC domain of Tel1 by introd...

متن کامل

Multifunctional Role of ATM/Tel1 Kinase in Genome Stability: From the DNA Damage Response to Telomere Maintenance

The mammalian protein kinase ataxia telangiectasia mutated (ATM) is a key regulator of the DNA double-strand-break response and belongs to the evolutionary conserved phosphatidylinositol-3-kinase-related protein kinases. ATM deficiency causes ataxia telangiectasia (AT), a genetic disorder that is characterized by premature aging, cerebellar neuropathy, immunodeficiency, and predisposition to ca...

متن کامل

Tel2 mediates activation and localization of ATM/Tel1 kinase to a double-strand break.

The kinases ATM and ATR (Tel1 and Mec1 in the yeast Saccharomyces cerevisiae) control the response to DNA damage. We report that S. cerevisiae Tel2 acts at an early step of the TEL1/ATM pathway of DNA damage signaling. We show that Tel1 and Tel2 interact, and that even when Tel1 protein levels are high, this interaction is specifically required for Tel1 localization to a DNA break and its activ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016